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ABSTRACT

The dimension spectrum H(4) is a function characterizing the distribu-
tion of dimension of sections. Using the multifractal formula for sofic
measures, we show that the dimension spectra of irreducible self-affine
sets {(McMullen’s Carpet) coincide with the modified Legendre transform
of the free energy Uy(f). This variational relation leads to the formula
of Hausdorff dimension of self-affine sets, max(d + H(d)) = ¥q4(n), where
n is the logarithmic ratio of the contraction rates of the affine maps.

1. Introduction

A self-affine set is composed of affine-contracted parts of itself. McMullen [8]
calculated the Hausdorff dimension of self-affine sets, or McMullen’s Carpets.
Kenyon and Peres [6] calculated the Hausdorff dimension of more general self-
affine sets (partially self-affine sets), which correspond to sofic shifts while
McMullen’s Carpets correspond to full shifts. They obtained their result by
approximating the partially self-affine set by McMullen’s Carpet.

In this paper, we investigate the dimension spectrum of self-affine sets and
establish its variational formula, as well as the relation to its Hausdorff dimension.
The dimension spectrum H(J) of a set S is the Hausdorff dimension of the set of
the heights where the horizontal section of the set S has box dimension §. In [9,
10}, we have shown that the dimension spectrum H(d) of the limit set of linear
cellular automata coincides with the Legendre transform of the free energy for
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dimension spectrum ¥4(3). Its proof uses a special property of cellular automata,
and does not apply to more general fractal sets.

The orthogonal projection of the Hausdorff measure on the limit set of linear
cellular automata to the vertical or the horizontal axis is a sofic measure ([4]). In
[11], we have shown the multifractal formalism for irreducible sofic measures, with
singularity a between its minimum o, and ag, the value where the singularity
spectrum f(c) attains its maximum: Omin < @ < @0, Gmin = inf{a: f(a) > 0}
and ap = inf{a: f(o) = maxy f(c)}. There exists a correspondence between
singularity « of the sofic measure and the box dimension § of the horizontal
section of the limit set. We apply the multifractal formula for sofic measures to
the dimension spectrum H () and show that the dimension spectrum H(4) is
given as a modified Legendre transformation of the free energy ¥4(3), if 4 is in
the upper region (8p < § < dmax):

) H(9) = g (WaB) = 2) 50 <9 < b

where the order 7 is the ratio of logarithms of the vertical contraction rate
to that of the horizontal one, &y = sup{d: H(J) = maxs H(d')}, and dmax =
sup{d: H(d) > 0}. Using this variational formula, we give the Hausdorff dimen-
sion of a self-affine set X, dimg X, as the summation of the dimension of the
horizontal direction § and the vertical one H(4):

(2) dimyg X = m?.x(é + H(d)),

which is also expressed by the free energy ¥(n).

2. Definition and main results

We consider following self-affine set in R? that consists of N-patterns. We divide
the unit square into rectangles of a columns and b rows,

[?ﬁ,i'ff_l] «[2 ¢+1

- 2 b] (p=0,...,a—1,¢=0,...,b—-1).

We denote a-cylinders on the z-axis [ﬂLa%L, Q—G”;',ﬂil] and b-cylinders on the
y-axis [y‘—mh, w_bynlﬂ] by [Z1...%s] and [y1 ... yn), respectively. Let f,q be the
orientation preserving affine map from the unit square to the rectangle [p] x [q].
Let gy (k= 1,...,N) be a map from (p,q) € {0,...,a =1} x {0,...,b—1} to
gx(p,q) € {0,...,N}. Let {X1,...,Xn} be a family of non-empty compact sets
which satisfies the following set of equations:
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Xo =0,
(3) X1 :Uqu(Xgl(p,q))’
2.4

Xy = U qu(XgN(p,q))'
D.q

Then we refer, by self-affine sets, to one of the sets in {X1,...,Xn}. The
number 7 = logb/ loga is the order of the self-affine set.

From now on, we deal with the self-affine set X = X; and assume that ¢ > b
and that {X1,..., X} is irreducible, i.e., for each pair of patterns X; and X,
X; contains an affine contracted pattern of X;.

A level set L, of X is defined by

(4) Ly = {z: (x,y) € X}.

The dimension spectrum H(8) of X is the Hausdorff dimension of the set of y's
where the box dimension of level set L, equals J:

(5) H($) = dimy{y: dimy L, = é}.
We define the free energy for dimension spectrum ¥4(3) by

_log Y, Ny ym)’
(6) Ya(B) = lim log "

¥

where N(yi...yn) is the number of affine contracted patterns of Xi,..., Xn
contained in X with vertical side [y; ... yn]:

_ (Y Yn Y1 Yn+1 g g+1 B
" N(yl"'yn)_ﬂ{q( w0 b )X(a—"’ an )HX_@}'

From the dimension spectrum H(4), the Hausdorff dimension of a self-affine
set is represented as follows.

THEOREM 2.1: Let n = logh/loga be the order of a seif-affine set X. If the
self-affine set is irreducible, its Hausdorff dimension is given by

(8) dimg X = max (5 + H(4)) = Ya(n).
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Theorem 2.1 indicates that the dimension of a self-affine set is given as the

summation of those in the horizontal direction, ¢, and in the vertical direction,
H(3).

Note: Replacing the box dimension dimy, Ly in (5) with the Hausdorff dimension
dimg Ly does not change the result stated in Theorem 2.1: if dy < § < dmax,
then

(9) dimpg {y: dimy Ly} = dimg{y: dimg L }.

Equation (9) follows from the following facts. We assume dp < § < dmax.
(i) Replacing the box dimension in (5) with the lower box dimension dimsL,
does not change its value ([11]):

(10) dimg{y: dimy, L, = 6} = dimg{y: dimyL, = 6}.
(i) A well-known inequality:
(11) dimgy L, < dimyL,,.

(iii) There exist a measure u?, defined by (34), and a set E, defined by Definition
3.7, such that

(12) pP (En{y: dimy Ly =0}) =1
and, for any y in E,
(13) dimy L, = dimyL,,.

3. Multifractal formula of Sofic measures and variational formula of
dimension spectra

In this section, we relate the dimension spectrum H(4) to the singularity spec-
trum f(a) of a sofic measure on the vertical axis. The singularity spectrum
f(@) of a measure g is the Hausdorff dimension of the set of points where the

singularity
lim log K ([yl ce yn])
n—o0 logb—m
equals a:
. o logp(lyr--yn))
(14) fl) = dimyy {y: lim ZEE R = o)
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In many cases, especially for quasi-multiplicative measures, the singularity spec-
trum f{a) coincides with the Legendre transform of the free energy ¥(5) ([2]).
The free energy of a measure p is defined by

B
(15) \I’(ﬂ) = nlgj[go log Z?/xgl;gg(ll:_[zl . yn]) .

The equality of the singularity spectrum and the Legendre transform of the free
energy

(16) flo) = inf (¥(B) — af)

is called the multifractal formula. The multifractal formula holds for quasi-
multiplicative measures ([2]).

The sofic measure as well as the semi-group measure are natural measures on
sofic systems. The sofic measure of a sofic system with b-symbols is defined as
follows ([4]). Let Ao, ..., Ap_1 be non-negative square matrices of the same size.
Let vp be a non-negative row vector. Let u be a non-negative right eigenvector
of (Ag+---+ Ap—1) and X be its eigenvalue. The sofic measure of a cylinder
[y1...yn] is given by

VoAy, ... Ay u

(17) B vn)) = O

The sofic measure is irreducible if the summation of the matrices
(Ag+ -+ Ap_1) is irreducible.

For irreducible sofic measures, the multifractal formula holds at the left half
of the graph of the singularity spectrum:

(18) fla) = [ggf; (¥(B) —aB) (amin < a < ag),
where

(19) Qmin = inf{e: f(a) > 0}

and

(20) o = supfax: f(e) = max f(a')}.

The multifractal formula does not hold at the right side of the graph of f(«a) for
sofic measures in general ([11]).
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The semi-group measure on a r-symbol sofic system is defined as follows ([7]).
Let fi (k = 1,...,7) be maps from {1,...,N} to {1,...,N}. Let A be the
non-negative N by N square matrix whose components are given by

(21) Ay; = {{k: fu(i) = 5}

Let u be a non-negative right eigenvector of A and A be its eigenvalue. We assume
that u is positive. The semi-group measure p of a cylinder [z ... 2,] is given by
(22) R

If the matrix A is irreducible, the multifractal formula holds for the whole range
of a ([3]).

To relate the dimension spectrum H(d) and its free energy Uq4(8) to f(a) and
U(f), we introduce a semi-group measure on X as follows, whose projection onto
the y-axis gives a sofic measure.

Let the N x N transition matrix A be defined by

(23) Ai; =@ 9): 9lp, 0 =5} (j=1,....N),

where g;: {0,...,a—1} x {0,...,b—1} = {0,..., N} is defined in the beginning
of section 2 and indicates that the pattern at [p] x [g] in X; is the affine contracted
pattern of Xy, o) With Xo = 0.

The element of the transition matrix A;; represents the number of affine-
contracted pattern X;’s in pattern X;. Irreducibility of {X;,..., Xy} implies
that of the transition matrix A.

Let u be a non-negative right eigenvector of the transition matrix A with

respect to its Frobenius eigenvalue A. The semi-group measure M on X is given
by

# M (. zal % o tal) = o

if [£1...2p] X [y1-..yn] N X is the affine-contracted pattern of X;.

Let u be the orthogonal projection of the above semi-group measure onto the
y-axis. The measure p of a b-adic-cylinder [y; . ..y, is represented by the partial
transition matrices, Aqg, ..., Ap_1, as

’U()Ayl e Aynu

(25) s gal) = B,
where vy = (1,0,...,0), and the partial transition matrices Ay,..., Ap_; are
defined by

(26) (Ak)ij = #{p: gi(p, k) = j}-
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A partial transition matrix Ay indicates the number of patterns in the k-th stage
[E k+1 ]
by b I

Using partial transition matrices, the number of rectangles [z1. .. zp]X[y1. . - Yn)

of X1 containing a non-empty pattern with vertical side [y1...yn], N(y1.--Yn),

is represented as

1
(27) Ny ... yn) = 'UOAyl cee Ayn c
1
1
where | | is the vertical vector with all components unity. From (25) and
1

(27), the singularity « of the measure p at a point ¥ = 0.y1y2 ... in the b-adic
expansion, is given by

(28) o= nlgr;o Togb"

Let 7 = logb/loga be the order of a self-affine set X. Noting that the box
dimension ¢ of a level set L, is given by

. logN(y1-.-yn
(29) 5= dimy Ly = lim log N{y1---yn)

i ;
—00 log a™

we have, from (28),
(30) 6+ no=logA/loga.

Concerning the free energies, (15), (28), (29) and (30) lead to the relation
between the free energy of singularity spectrum W¥(3) and the free energy of
dimension spectrum ¥q(53):
log A
log 8
From (30) and (31), multifractal formalism (18) applies to the dimension
spectrum as follows.

LEMMA 3.1: Let 6y = sup{d: H(d) > 0} and &y = sup{d: H(6) = 1}. The

dimension spectrum H(8) with 8y < § < dmax Is given as a modified Legendre
transform of the free energy ¥4(8):

(81) U(B) +¥a(B) =8

(32) H(8) = inf (\yd(ﬂ) - %5.) .

F>0

Before proving Theorem 2.1, we illustrate the situation by an example.
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Example 3.2: We consider a self-affine set with N = 2 (2 patterns), a = 3

(horizontal contraction rate is 1), b = 2 (vertical contraction rate is 3) and

91(0,1) = ¢1(2,1) = g2(1,1) = 0, g1(0,0) = g1(1,1) = g1(2,0) = 92(1,0) =1,
g1(1,0) = ¢2(0,0) = g2(0,1) = g2(2,0) = g2(2,1) = 2, i.e., X; contains the
affine contracted X; at [3,31] x (3,1, (3,31 x [3,2], [3,3] x [3, 5], the affine-
contracted X at [, 2] x [2, 1], while X, contains the affine-contracted X1 at
[£,2] x [2,1], and the affine-contracted X3 at [, 3] x [2,1], [3,3] x [$. 3]
2 3] x [L 2] The self-affine sets X; and X, are shown in Figure 1. X; is
3'3 2°2
composed of three affine-transformed X;’s and one X, while X5 is composed of
one X; and four X5’s. The order of the self-affine set is given by = logb/ loga =

log2/ log 3.

(a) (b)

Figure 1. Self-affine sets Xy (triangle pattern (a)) and X, (square
pattern (b)). X; consists of three contracted X;’s and one con-

tracted X5, while X» consists of one X; and four Xs’s. The con-

traction rate is 3 in the horizontal direction, and % in the vertical

direction. The order 7 is given by 1 = 1—0(%2 %g%. In the lower
half, X; contains two contracted X; and one contracted Xy, while

X, consists of one X; and two X3’s, which gives the partial transi-

21 ) Similarly, we obtain A; = (1 0).

tion matrix Ag = (1 9 0 2

Counting affine transformed patterns in the lower part and the upper part
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separately, we obtain the partial transition matrices Ay = (? ;) and A; =
10
0o 2/

From the partial transition matrices, we calculate the dimension spectrum of
X, through the Legendre transformation of the free energy ¥q4(5). In Figure 2,
numerical calculation of the free energy ¥4(5) of X; and its Legendre transfor-
mation are shown. As stated in Theorem 2.1, the right side of the graph of the
Legendre transformation of ¥4(/) coincides with the dimension spectrum H(J)
of X1. However, the left side of the graph deviates from H(4): while the Leg-
endre transform of ¥4(f) is positive between between 0 and log 2/ log3, no level
set L, has dimension in that interval. The Legendre transformation of ¥4(8) of
X is shown in Figure 3 by a bold solid line. It touches the z-axis at log2/log3.

Y,(B) H(d)
20 5 1

/]

-10 E

(@) (b)

Figure 2. (a) The free energy ¥4(f8) of the self-affine set X;.
(b) The Legendre transform of ¥4(3). It deviates from H(J), since
no level set has dimension between 0 and log2/ log 3.

The Hausdorff dimension of X; and X5 is given by

log 2

\II :\If T =1 PEREIN
a(n) d (10g3) 7509

To calculate the Hausdorff dimension of self-affine set X, we extend
Billingsley’s lemma ([1]) to the higher dimensional situation. A pair of a family
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of cylinder sets {cp(p)} and a probability measure v is said to be regular if it

satisfies the following four conditions.

(r-1) In two of {c,(p)}, either one contains the other, or their intersection does
not decrease their diameters:
Let A = {em(q): en(p) Nem(q) # cn(p) and cn(p) Nem(q) # cm(q)}; then
[en® MU, s en@)] = len(r)]

(r-2) There exist a natural number L and a positive real number D such that any
set S with diameter less than D can be covered by L cylinders of diameter
less than that of S.

(r-3) For any point p, there exists a decreasing series of cylinders c,(p) with
bounded ratio of diameters converging to the point {p}:
Vp, Jen(p), p € cn(p), cn(P) D cnt1(p), limy 00 |en(p)] = 0 and

].im inf |C"7r+1 (p) |

> 0.
n=oo  |ca(p)|

(r-4) If two cylinder sets c,(p) and ¢, (g) do not contain each other, their inter-
section is the null set of v:

en(p) ¢ cm(q) and cm(q) & en(p) = v(ca(p) Nem(g)) = 0.

H()
1

0 13

Figure 3. The Legendre transform of X5’s free energy (bold line)
and that of X1’s (thin line). They coincide at their right-side slope.

LEMMA 3.3: Suppose a family of cylinders {c,(p)} and a probability measure v
satisfies the above conditions (r-1) to (r-4). Then the following estimates of the
dimension of a set S hold:
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. o . logv(cn
(a) dimp S < sup,egliminf, o0 ?gg[(cn(m)"

(b) if v(S) > 0, then dimy S > infes liminf,_, o, 2E¥(2(2)

n—=o0 ogjen(p)| -

Proof of Lemma 3.3: To prove (a), we show that H*1¢1(S) < oo for any £1 > 0,
with
o = sup lim inf logv(cn(p)) (p))
pes oo logle,(p)]
From the definition of a, for any g5 > 0, there exists a ey-covering of S, {V;},
such that |V;]*"®* < »(V;). From the property (r-4), we may assume that the
intersection of V; and Vj (¢ # j) is the null set of v. Hence

(33) HEFe <N VT <Y w(V) < p(S) <1

(b) is proved in a similar manner. |

We construct cylinder sets satisfying the conditions (r-1) to (r-3). Let z = (z,y)
be a point in the self-affine set X. We define cylinder sets ¢,(z) by

eal2) = [21--2m] X 91 Yn],
where m is the integer part of

1
n = ———Ogbn.
loga

Obviously the family of cylinder sets defined above, {c,(2)}, satisfies the above
regularity conditions (r-1) to (r-3).

We construct the Gibbs measure M? on X satisfying (r-4), and apply Lemma
3.3 to it. First, we define the Gibbs measure u? of y defined in (25) onto the
y-axis by

Zzl...zm /‘l’([ylynzlzm])ﬁ

(34) 12 ([y1--yn)) = lim w1 Wn 1))

n—o0

W1...Wn21...2Zm I‘L([

The measure M? is given by
(35) MP(ca(2)) =
w(y1. .- Ynp1-- .;1)k)ﬂviAym+1 Ay Ap L Ap,

. 1
dm Y5

i) S (w1 . WnWnt1 . Wik )P N(Yy ... Ynp1 .. D)’




12 S. TAKAHASHI Isr. J. Math.

where the region [£1...Zn] X [y1...Ym] contains the pattern X;, and v; is the
row vector with i-th component 1 and the other components 0. Note that pf is
the orthogonal projection of M? to the y-axis.

Before calculating the Hausdorff dimension of X, we need a variation of
Billingsley’s lemma, which is proved in the same way as in Lemma 3.3.

LEMMA 3.4: Let {S;} be a division of a set S: S = |J, S and S; N §; =
0. Suppose cylinder sets {c,(p)} and probability measure v satisfy regularity
conditions (r-1) to (r-4). We assume that the n-th stage cylinders {c,(p)} have
the same diameter. Then we have an estimate of the dimension of S:

e (p)ipesg V(o))

dimg S < sup lim inf Hen(p): pESq}
p N log [en(p)|

log

The proof of Theorem 2.1 consists of three lemmas.

LEMMA 3.5: If the self-affine set X is irreducible, we have
dimyg X > max (6 + H(3)).

Before proving Lemma 3.5, we define the t-regular set, which is introduced in
[11]. We note that there exists a product of partial transition matrices that has
a similar property to positive matrices, if their summation is irreducible.

PRroPOSITION 3.6 ([11]): We assume that the summation of the partial transi-
tion matrices, (Ag + -+ -+ Ap_1), is irreducible. There exists a family of subsets
of {1,...,N}, 91,-..,9L, with g1 U ---Ugr = {1,..., N}, which satisfies the
following two conditions.

(1) For any partial transition matrix Ay and any group gr, there exists a group
g such that, for any i in gr, if (Ax);; Is positive, then j belongs to g, that is,
Ay, maps the group gy into the group g;.

(2) There exists a collection of products of partial transition matrices
{By,...,Bum} such that, for each i, there is a B, with (Bs)ii > 0 and such
that, for a group ¢y containing i, the positive entries of B, in g; x gr forms
a rectangular shape, ie., (Bs)i,j, > 0 and (Bs)i,j, > 0 with iy,12,51,j2 € g1
implies (By)i,j, > 0 and (Bj)s,j, > 0.

Without loss of generality, regarding a certain length of symbol sequences as
one symbol if necessary, we may assume that By,..., By in Proposition 3.6 are
contained in the partial transition matrices , Ay,..., Ap, and we denote them as
Ay, Aty,- We define the shift oy, on the set of groups {g1,..., g} as follows
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oy, (91) is the group such that 7 € g7 and (4y,),; > 0 implies j € oy, (1), i.e.,
A,, maps the group g; into the group oy, (gr). Let t(gr) be the set of t,’s where
A¢, has a non-empty set of non-zero elements with rectangular shape in gy x g;.

The t-regular set is the set where ¢, appears sufficiently often in its expansion
and is defined as follows.

Definition 3.7. (t-Regular Set [11]): Let Ex be the set of y’s such that the r-adic
expansion of y, y = 0.y1y2 ..., contains at least one y; € t(oy,. 4 _,(g1)) in the
first k digits, and at least one y; € t(0y,..y,_,(91)) in the following k 4 1 digits,
and so on:

(36) By =
(24— 1
{y:VjZO,EIiE{‘Lj;]——)

The t-regular set E is the union of Ey’s:

G+ DQRk+])

+1a"'7 9 }72/1 et(ayl---yi—l(gl))}‘

(37) E= O Eg.
k=1

The t-regular set has the following properties.
LeEMMA 3.8 ([11]): The t-regular set E has full measure of uf: pf(E) = 1.

Let S, be the set of points where the singularity of p equals a. Using the
t-regular set and ergodicity of the shift, we have the following lemma.

LEMMA 3.9 ([11)): If the singularity o is between ag and i, there exists a
non-negative 3 such that u?(S,) = 1.

On the set

. logp(lyr - yn))
Se = {y Tog b7 — a},

the singularity spectrum of 4? is given by a8 — ¥(B).

LEMMA 3.10: Let y belong to the set of So. Then the singularity of the Gibbs
measure u” at y for non-negative f is given by

m IOg;u'ﬁ([yl - Ynl) =af - ¥(B).
nsoco  log|[yr ... yn]|
Proof of Lemma 3.5: Let E be the t-regular set defined in Definition 3.7. We
define the set F by ([1,0] x E) N X.
Let T, be the inverse image of S, in X by orthogonal projection to the y-axis:
To = ([1,0] x So) N X, where S, is the set of points with singularity a. From
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Lemmas 3.8 and 3.9, if we take 3 satisfying p?(Sa) = 1, then MP(T, N F) = 1,
since p? is the projection of M?, and p?(E) = 1.

Let (z,y) € Ta N F, v = max{k: yx € t(oy1...Yx-1(91)),k < m} and s =
min{k: y, € t{oyr ... ye-1(g1)), k > m}. From

max; ('U()Ayl...yr)i <a
min{(voAy,..y.); 1 (VoAy,...y,); # 0} ~

and Eij (Ayr+1~~~ys)i]' > 1 withi € oy, 4,(g1) and j € 0y, 4, (g1), and (A'!/k)ij <
a, we have

1 ’U()Ay e Ays
e A 1

< /7
R T W W &

(38)

where i € oy, 4. (g1) and v; is the row vector with i-th component 1 and the
other components 0. Since y is in F, r is smaller than

m+1 loga

n< n  logh

(m+1)

for sufficiently large n. Therefore (38) implies

(39) ;1;_—17,:5N(y1...ym)§ N(yi..-Ynp1---Pk) _,
Vidyn i - Ao Ap, - Ap, ( : )
1
and hence, from (35),
(40) MP(ea(2)) < as—r+2to - aD).
N(yi1-.-ym)

Using (40), the singularity of M? is evaluated as

p Blys . yn N1 ym
(41) lim log MP(ca(2)) > lim log 4” ([y1 - - - yn)) + lim loi(_yl_il‘
n—oo  logen(2)] n-roo logb—" m—co loga™

Letting § = i—ﬁg% — na, from Lemma 3.10, the first term of (41) tends to

8
i 1084 (ly1---9a))
n—00 logb_"'

=Pa - ¥(p)

=f(a)
(42) =H(9),
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while the second term of (41) tends to

(43) lim O8N W1 ym) _ g
m—ro0 loga™

Since M?(T, N F) = 1, using Billingsley’s lemma (Lemma 3.3), the Hausdorff
dimension of the self-affine set X is evaluated from below by

A
(44) dimg X > dimy (Ta N F) > & + H(3) (5 - k’i A na) ,
or

i > .
(45) dimg X > 6051?3()5(“‘“ (6 + H(5)) |

LEMMA 3.11: max; (6 + H(8)) = Ua(n).

Proof Lemma 3.11: Since (log3>, N(y1 .. .¥n)?)/logb™ in the right hand side
of (6) is a convex function of 8, so is ¥4(S). As the inverse transformation of the
modified Legendre transformation in Lemma 3.1, we have

(46) Tq4(B) = max (H(é) + %@) .

Setting 8 = 7, we obtain

(47) max(8 + H(8) = Ya(n). W

LEMMA 3.12: dimg X < \I/d(n).

Proof Lemma 3.12: 'We consider the singularity of M7. Let L, be the subset of
X where the y-coordinate is L, = {(z’,y') € X: y' = y}. Since the projection of
M7 is pu", we have

083, (o). 2er, M7(en(2)
(48) logica(s): z€Ly)  _ logp" ([y1 ... yn]) | log N(y1...ym)
logb—n log b—n log a™ '

Noting that the ratio of g ([y1 ... ys]) to N(y1...yn)/a™, as well as 4 ([y1 . . - yn])

to Zwl__.wk pyr-. - ynws . "wk])ﬂ/Zwl...wk p([wy ... wy))? is bounded, the in-
ferior limit of the first term of (48) tends to
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o log " ([yr - - ym])
) BBE ogem
n o1 e zp))?
— lim inf [logu([yl-.-yn]) logd,, e #z1- - 20]) ]
n—300 logh—" logb—"

Un)" GO N(zy...2z,)" ny
=lim inf [ _logN(y1...yn)" | loga 083 4.y Nz 2a)"  loga ]
n—oc 10g ' 10g pn lo g Bn log b

e 1logN(y1..-yn)
‘1L%£f(5—*k,ga——) + Wy ().

From McMullen’s lemma in [8], the inferior limit of the second term of (48) and
the first term in (49) together are evaluated as

(50)
N Y1..-Yn 1/n
1 N(yi ... log Arr=talon
lim inf [—l g N yn) | log N(ys y’")] — liminf — — M@)o
n—oo n loga loga™ n—00 loga

Therefore, the inferior limit of (48) is evaluated as

log ch(z): z€Ly M7 (ca(2))

(51) lim inf 1°g"{1c(;‘g";LZEL”} < Wy(n).

By applying a variation of Billingsley’s lemma (Lemma 3.4), we have

(52) dimyg X < \I/d(n). [ |

Theorem 2.1 immediately follows from Lemmas 3.5-3.12.

References

[1] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.

[2] G. Brown, G. Michon and J. Peyri¢re, On the multifractal analysis of measures,
Journal of Statistical Physics 66 (1992), 775-790.

[3] G. A. Edgar and R. D. Mauldin, Multifractal decompositions of digraph recursive
fractals, Proceedings of the London Mathematical Society 65 (1992), 604-628.

(4] M. Fuyjiwara, T. Hamachi and M. Oshikawa, Sofic systems and sofic measures,
Surikaisekikenkyusho Kokyuroku 552 (1985), 69-78 (in Japanese).

[5] T. Kamae and S. Takahashi, Ergodic Theory and Fractals, Springer-Verlag, Tokyo,
1993 (in Japanese).



Vol. 127, 2002 DIMENSION SPECTRA OF SELF-AFFINE SETS 17

[6] R. W. Kenyon and Y. Peres, Hausdorff dimensions of sofic affine-invariant sets,
Israel Journal of Mathematics 94 (1996), 157-178.

[7] B. Kitchens and S. Tuncel, Finitary measures for subshifts of finite type and sofic
systems, Memoirs of the American Mathematical Society 58 (1985), 1-68.

[8] C. McMullen, The Hausdorff dimension of general Sierpinski carpets, Nagoya
Mathematical Journal 96 (1984), 1-9.

[9] S. Takahashi, Cellular automata and multifractals: dimension spectra of linear
cellular automata, Physica D 45 (1990), 36-48.

[10] S. Takahashi, A variational formula for dimension spectra of linear cellular
automata, Journal d’Analyse Mathématique 64 (1994), 1-51.

[11} S. Takahashi, Multifractal formalism for sofic measures, preprint.



