
ISRAEL JOURNAL OF MATHEMATICS 127 (2002), 1-17 

DIMENSION SPECTRA OF SELF-AFFINE SETS 

BY 

S A T O S H I  T A K A H A S H I  

Graduate School of Human Culture, Nara Women's University 
Kitauoya nishimachi, Nara, 630-8506, Japan 

e-mail: takahasi@lisboa.ics.nara-wu.ac.jp 

ABSTRACT 

The dimension spectrum H(5) is a function characterizing the distribu- 
tion of dimension of sections. Using the multifractal formula for sofic 
measures, we show that the dimension spectra of irreducible self-atone 
sets (McMullen's Carpet) coincide with the modified Legendre transform 
of the free energy ~d(f~). This variational relation leads to the formula 
of Hausdorff dimension of self-afflne sets, max((f + H(5)) = kOd(q?), where 
~7 is the logarithmic ratio of the contraction rates of the atone maps. 

1. I n t r o d u c t i o n  

A self-affine set is composed of affine-contracted par ts  of itself. McMullen [8] 

calculated the Hausdorff  dimension of self-affine sets, or McMullen's  Carpets.  

Kenyon and Peres [6] calculated the Hausdorff dimension of more general self- 

affine sets (partially self-affine sets), which correspond to sofic shifts while 

McMullen's  Carpets  correspond to full shifts. They  obtained their result by 

approximat ing the part ial ly self-affine set by MeMullen's  Carpet .  

In this paper,  we investigate the dimension spec t rum of self-affine sets and 

establish its variational formula, as well as the relation to its Hausdorff  dimension. 

The dimension spec t rum H(5)  of a set S is the Hausdorff  dimension of the set of 

the heights where the horizontal section of the set S has box dimension 5. In [9, 

10], we have shown tha t  the dimension spec t rum H(5)  of the limit set of linear 

cellular a u t o m a t a  coincides with the Legendre t ransform of the free energy for 
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dimension spectrum IDd(~) .  Its proof uses a special property of cellular automata, 

and does not apply to more general fractal sets. 

The orthogonal projection of the Hausdorff measure on the limit set of linear 

cellular automata to the vertical or the horizontal axis is a sofic measure ([4]). In 

[11], we have shown the multifractal formalism for irreducible sofic measures, with 

singularity s between its minimum stain and so, the value where the singularity 

spectrum f ( s )  attains its maximum: Smi n < S ~ S0, Smi n = inf{s: f ( s )  > 0} 

and s0 = inf{s: f ( s )  = maxa, f ( s ' ) } .  There exists a correspondence between 

singularity s of the sofic measure and the box dimension 5 of the horizontal 

section of the limit set. We apply the multifraetal formula for sofic measures to 

the dimension spectrum H(5) and show that  the dimension spectrum H(5) is 

given as a modified Legendre transformation of the free energy ~d(/3), if 5 is in 

the upper region (50 _< 5 < 5ma:,): 

(1) H ( 5 ) =  In~X (kI/d(/~) -- @ )  (50 ~ 5 < 5max ) 

where the order r/ is the ratio of logarithms of the vertical contraction rate 

to that of the horizontal one, 50 = sup{& H(5) = max,, H(5')}, and 5ma~ = 

sup{& H(5) > 0}. Using this variational formula, we give the Hausdorff dimen- 

sion of a setf-affine set X, dimH X, as the summation of the dimension of the 

horizontal direction 5 and the vertical one H(5): 

(2) dimH X = max(5 + H(5)), 

which is also expressed by the free energy ~07)- 

2. D e f i n i t i o n  and  m a i n  resu l t s  

We consider following self-affine set in R 2 that  consists of N-patterns. We divide 

the unit square into rectangles of a columns and b rows, 

-T% -V-J (;=0,. . . ,a-I,  q=0,... ,b-g. 

We denote a-cylinders on the x-axis [~t...x, z~...~+l] and b-cylinders on the k a n ' a n J 

y-axis [ylb.~y~, yl..~n+l] by [ x , . . .  x~] and [Yl..-Y~], respectively. Let h q  be the 

orientation preserving affine map from the unit square to the rectangle [p] x [q]. 

Let gk (k = 1 , . . . , g )  be a map from (p,q) • { 0 , . . . , a -  1} × ( 0 , . . . , b -  1} to 

gk(P, q) • {0 , . . . ,  N}. Let ( X 1 , . . . ,  XN} be a family of non-empty compact sets 

which satisfies the following set of equations: 
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X0 ~--0, 

(a) x l  = [_J fpq(xg (p,q)), 
P,q 

P,q 

Then we refer, by self-aff ine sets ,  to one of the sets in { X 1 , . . . , X N } .  The 

number r / =  log b~ log a is the o r d e r  of the self-affine set. 

From now on, we deal with the self-affine set X = X1 and assmne that  a > b 

and that  { X , , . . . ,  XN}  is i r r educ ib l e ,  i.e., for each pair of patterns Xi and Xj ,  

Xi  contains an afline contracted pat tern of Xj. 

A level  se t  Ly of X is defined by 

(4) Ly = {x: (x,y)  C X}. 

The dimension spectrum H(5) of X is the Hausdorff dimension of the set of y's 

where the box dimension of level set Ly equals 5: 

H(5) = dimH{y: dimb Ly = 5}. 

We define the free energy for dimension spectrum ~IJd(~) by 

log ~~yl...y~ N (yl . . . y,~ )Z 
(6) /IId(fl) = lim 

n - ~  log b n ' 

where N(y l . . . y ,~ )  is the number of affine contracted patterns of X 1 , . . . , X N  

contained in X with vertical side [Yl.-. Y,]: 

(7' N(yl . . .yn)  ~- ~{q: (Yl.._b n'yn' Yl...Ynq-1)b n x ( q  a--n ] "~ f"lX : 0 } .  

From the dimension spectrum H(a), the Hausdorff dimension of a self-afline 

set is represented as follows. 

THEOREM 2.1 : Let 71 = log b/log a be the order of  a self-aff/ne set X.  I f  the 

self-affine set is irreducible, its Hausdorff dimension is given by 

(8) dimH X = max (5 + H(5)) : ~d(~). 
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Theorem 2.1 indicates that the dimension of a self-affine set is given as the 

summation of those in the horizontal direction, (f, and in the vertical direction, 

H(5). 

Note: Replacing the box dimension dimb Ly in (5) with the Hausdorff dimension 

dimg L~ does not change the result stated in Theorem 2.1: if 50 <_ 5 < 5ma~,, 

then 

(9) dimH{y: dimbLy} = dimg{y: dimHLy}. 

Equation (9) follows from the following facts. We assume 50 <_ 5 < 5m~x. 

(i) Replacing the box dimension in (5) with the lower box dimension dimbLy 
does not change its value ([11]): 

(10) dimH{y: dimb Ly = 5} = dim/4{y: dimbLy = 5}. 

(ii) A well-known inequality: 

(11) dimH Ly < dimbLy. 

(iii) There exist a measure S ,  defined by (34), and a set E, defined by Definition 

3.7, such that 

(12) #~ (E N {y: dimb Ly = 5}) = 1 

and, for any y in E, 

(13) dimH Ly = dimbLy. 

3. M u l t i f r a c t a l  fo rmula  of  Sofic measu re s  and variational fo rmula  of  

d i m e n s i o n  spec t r a  

In this section, we relate the dimension spectrum H(5) to the singularity spec- 

trum f(a) of a sofic measure on the vertical axis. The s ingu la r i ty  s p e c t r u m  

f(a) of a measure # is the Hausdorff dimension of the set of points where the 

s ingu la r i ty  

lim log ~ ( [y l . . .  y~]) 
n-~o~ log b -~ 

equals a: 

(14) f(a) -= dimH ~Y: lira log~([yl. . .y,~]) = a} .  
~-+o~ log b -~ 
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In many cases, especially for quasi-multiplicative measures, the singularity spec- 

t rum f ( a )  coincides with the Legendre transform of the free energy ~(ft) ([2]). 

The f ree  e n e r g y  o f  a m e a s u r e  # is defined by 

(15) ~(fl) = lira l ° g E Y l Y "  ( # [ y l " ' ' y n ] )  # 
n - ~  log b -~ 

The equality of the singularity spectrum and the Legendre transform of the free 

energy 

(16) f(c~) = i~f (~(ft) - od3) 

is called the multifractal formula. The multifractal formula holds for quasi- 

multiplicative measures ([2]). 

The sofic measure as well as the semi-group measure are natural  measures on 

sofic systems. The sofic measure of a sofic system with b-symbols is defined as 

follows ([4]). Let A0 , . . . ,  Ab-1 be non-negative square matrices of the same size. 

Let v0 be a non-negative row vector. Let u be a non-negative right eigenvector 

of (A0 + " .  + Ab-1) and A be its eigenvalue. The sofic measure of a cylinder 

[yl . . .  y~] is given by 

(17) # ([Yl. . .  Yn]) = v°Ayl "'" Ay,~ U 
AnVo u 

The sofic measure is i r r e d u c i b l e  if the summation of the matrices 

(Ao + ' "  + Ab-1) is irreducible. 

For irreducible sofic measures, the multifractal formula holds at the left half 

of the graph of the singularity spectrum: 

(18) 

where 

f ( a )  = inf (~(ft) - aft) (OLmi n < OL < Oto) , 
#_>o 

(19) Otmi n = inf{a: f ( a )  > O} 

and 

(20)  s o  = sup{ : = 

The multifractal formula does not hold at the right side of the graph of f ( a )  for 

sofic measures in general ([11]). 
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The semi-group measure on a r-symbol sofic system is defined as follows ([7]). 

Let fk  (k -- 1 , . . . , r )  be maps from { 1 , . . . , N }  to { 1 , . . . , N } .  Let A be the 

non-negative N by N square matrix whose components are given by 

(21) A~j = ~{k: fk( i )  = j } .  

Let u be a non-negative right eigenvector of A and A be its eigenvalue. We assume 

that ul is positive. The semi-group measure # of a cylinder [zl . . .  Zn] is given by 

(22) ' ( [ Z l " "  .zn]) = ~ f z n . . . f z l ( 1 )  
AnUl 

If the matrix A is irreducible, the multifractal formula holds for the whole range 

of ([3]) 
To relate the dimension spectrum H(6)  and its free energy ~a(/3) to f(c~) and 

• (/3), we introduce a semi-group measure on X as follows, whose projection onto 

the y-axis gives a sofic measure. 

Let the N x N t r a n s i t i o n  m a t r i x  A be defined by 

(23) Aij = ~{(p,q): 9i(P,q) = J} ( i , j  = 1 , . . . , N ) ,  

where gi: {0 , . . . ,  a - 1} x {0 , . . . ,  b - 1} --+ {0 , . . . ,  N} is defined in the beginning 

of section 2 and indicates that the pattern at [p] × [q] in Xi is the affine contracted 

pattern of Xg~(p,q) with Xo = 0. 

The element of the transition matrix Aij represents the number of affine- 

contracted pattern Xj 's  in pattern Xi. Irreducibility of { X 1 , . . . , X N }  implies 

that  of the transition matrix A. 

Let u be a non-negative right eigenvector of the transition matrix A with 

respect to its Frobenius eigenvalue A. The semi-group measure M on X is given 

by 
uj 

(24) M (Ix1. . .  xn] x [Yl..-Y,~]) = Anui '  

if [xl . . .  xn] × [Yl-.. Yn] ;3 X is the affine-contracted pattern of Xj. 

Let # be the orthogonal projection of the above semi-group measure onto the 

y-axis. The measure # of a b-adic-cylinder [yl . . .  Y~] is represented by the partial 

transition matrices, A0 , . . . ,  Ab-1, as 

(25) # ([Yl ..-Yn]) = v°Ayl " "" du ,  u 
)~n 

where Vo = (1 ,0 , . . . ,  0), and the p a r t i a l  t r a n s i t i o n  m a t r i c e s  A0 , . . . ,  Ab-1 are 

defined by 

(26) (Ak)ij = ~{P: 9i(P, k) = j } .  
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A partial transition matrix Ak indicates the number of patterns in the k-th stage 

Using partial transition matrices, the number of rectangles [x~... Xn] x [y~... Yn] 

of X1 containing a non-empty pattern with vertical side [yl .-- Yn], N(yl ... Yn), 
is represented as 

(27) 

1 

is the vertical vector with all components unity. From (25) and 

(27), the singularity a of the measure # at a point y = O.yly2 ... in the b-adic 

expansion, is given by 

(28) a = lira log N(ylA n'''yn) 
,~ -~  log b n 

Let ~ = logb/ loga  be the order of a self-affine set X. Noting that the box 

dimension 5 of a level set Ly is given by 

(29) 5 = dimb Ly = lira log N ( y l . . .  Yn) 
n--*~ loga n ' 

we have, from (28), 

(30) 5 + ~a = log A/log a. 

Concerning the free energies, (15), (28), (29) and (30) lead to the relation 

between the free energy of singularity spectrum ~(fl) and the free energy of 

dimension spectrum ~d(~): 

/~ log 
(31) ~(fl) + ~d(/~) = ,- ~ .  

From (30) and (31), multifractal formalism (18) applies to the dimension 

spectrum as follows. 

LEMMA 3.1: Let 5ma~ = sup{& H(5) > 0} and 50 = sup{5: H(5) = 1}. The 

dimension spectrum H(5) with 6o ~_ 5 < (~max is given as a modified Legendre 
transform of the free energy ffJd(~): 

(32) H ( 5 ) = i n f  ( ~ d ( ~ ) - - ~ ) . ~ > _ 0  

Before proving Theorem 2.1, we illustrate the situation by an example. 
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Example 3.2: We consider a self-affine set with N = 2 (2 patterns), a = 3 
(horizontal contraction rate is ½), b = 2 (vertical contraction rate is ½) and 

gi(0,1) = gi(2,1) = g2(1,1) = O, gi(O,O) -- gl(1,1) = gi(2,0) = g2(1, O) = 1, 
gl(1,0) = g2(0,0) = g2(0,1) = g2(2,0) = g2(2,1) = 2, i.e., X 1 contains the 
affine contracted X1 at [0, ½] x [0, ½], [½, _~] x [½, 2], [2' 33-] x [0, ½], the affine- 

1 2 1 contracted X2 at [5, ~] x [0, ~], while X2 contains the affine-contracted Xi at 
[½, 2] x [0  ½], and the affine-contracted X2 at [0, ½] × [0, ½], [2, 3] x [0, ½], 

1 2 [2' 3] x [5' 5]" The self-affine sets Xi and X2 are shown in Figure 1. Xi is 
composed of three affine-transformed Xl 's  and one X~ while X2 is composed of 
one Xi and four X2's. The order of the self-affine set is given by y = log b~ log a = 
log 2/log 3. 

(a) (b) 

Figure 1. Self-affine sets Xi  (triangle pattern (a)) and X2 [square 
pattern (b)). X1 consists of three contracted Xl 's  and one con- 
tracted X2, while X2 consists of one Xi and four X2's. The con- 

i in the vertical i in the horizontal direction, and 5 traction rate is 5 
log ! log 2 In the lower direction. The order ~ is given by ~/= ~ = log 3" 

half, Xi contains two contracted Xi and one contracted X2, while 
X2 consists of one Xi and two X2's, which gives the partial transi- 

t i o n m a t r i x A 0 = ( 2  1 )  Similarly, w e o b t a i n A i = ( 1  0 )  
1 2 " 0 2 " 

Counting affine transformed patterns in the lower part and the upper part 
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separately, we obtain the partial transition matrices Ao = (21 12)and A I =  

('0 0) 
From the partial transition matrices, we calculate the dimension spectrum of 

X1 through the Legendre transformation of the free energy ~d(~). In Figure 2, 
numerical calculation of the free energy ~d(~) of Xt and its Legendre transfor- 
mation are shown. As stated in Theorem 2.1, the right side of the graph of the 

Legendre transformation of ~d(fl) coincides with the dimension spectrum H(5) 
of X1. However, the left side of the graph deviates from H(5): while the Leg- 

endre transform of tI/d (fl) iS positive between between 0 and log 2/tog 3, no level 

set Ly has dimension in that interval. The Legendre transformation of ~a(~) of 

X2 is shown in Figure 3 by a bold solid line. It touches the x-axis at log 2/log 3. 

20 

.,O,o j 

/ 
1 

O0 1 

(a) (b) 

Figure 2. (a) The free energy qd(/3) of the self-affine set Xt. 

(b) The Legendre transform of ~d(fl). It deviates from H(5), since 

no level set has dimension between 0 and log 2/log 3. 

The Hausdorff dimension of Xt and X2 is given by 

= = 1 . 7 5 0 9  . . . .  

To calculate the Hausdorff dimension of self-affine set X, we extend 

Billingsley's lemma ([1]) to the higher dimensional situation. A pair of a family 
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of cylinder sets {ca(p)} and a probability measure v is said to be regular if it 

satisfies the following four conditions. 

(r-l) In two of {c,(p)}, either one contains the other, or their intersection does 

not decrease their diameters: 

Let A = {cm(q): c,~(p) n Cm(q) ~ ca(p) and cu(p) N Cm(q) ~ Cm(q)}; then 

c~(p) NUcm(q)cA cm(q) = Ic~(p)L 
(r-2) There exist a natural number L and a positive real number D such that any 

set S with diameter less than D can be covered by L cylinders of diameter 

less than that of S. 

(r-3) For any point p, there exists a decreasing series of cylinders c,~(p) with 

bounded ratio of diameters converging to the point {p}: 

Yp, 3c~(p), p E ca(p), e~(p) D Cn+l(p), lim~_~o~ Icn(p)l = 0 and 

liminf [c~+1 (p)[ > 0. 

(r-4) If two cylinder sets c~(p) and c,~(q) do not contain each other, their inter- 

section is the null set of v: 

Ca(p) • Cm(q) and 

H(o") 
1 

0 
0 

Cm(q) • cn(p) ~ v(cn(p) n cm(q)) = O. 

I 8 

Figure 3. The Legendre transform of X2's free energy (bold line) 

and that of Xl'S (thin line). They coincide at their right-side slope. 

LEMMA 3.3: Suppose a family of cylinders {ca(p)} and a probability measure v 
satisfies the above conditions (r-l) to (r-4). Then the following estimates of the 
dimension of a set S hold: 
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(a) dimH S < SUppes lim inf~_~c~ log.(~.(p)). 
- -  l o g [ a , , ( p ) [  ' 

(b) if u(S) > O, then dimn S > infpcs lira infn~oo log ,(c~ (p)) 
- -  l o g l c , ~  ( p ) l  " 

Proof of Lemma 3.3: 
with 

11 

To prove (a), we show that 7/~+~ (S) < oc for any ~1 > 0, 

= sup lim inf log u(c~ (p)) 
~cs ~ - ~  log l~ (p ) l  " 

From the definition of a,  for any ¢2 > 0, there exists a E2-covering of S, {If/}, 

such that IV~l ~+~  _< ~(v~). From the property (r-4), we may assume that the 

intersection of Vi and Vj (i ¢ j )  is the null set of u. Hence 

(33) ..~74 ~+'1 < . . . .  ~--~ IV~l ~+~' < ~ . ( v ~ )  < ~(s )  < 1. 
i i 

(b) is proved in a similar manner. | 

We construct cylinder sets satisfying the conditions (r-l) to (r-3). Let z = (x, y) 

be a point in the self-affine set X. We define cylinder sets c,~(z) by 

~ ( ~ )  = [x~ . . . ~ ]  × [ y l . . . y ~ ] ,  

where m is the integer part of 

log b 
llrt---- 1-~ga TM 

Obviously the family of cylinder sets defined above, {c,~(z)}, satisfies the above 

regularity conditions (r-l) to (r-3). 

We construct the Gibbs measure M E on X satisfying (r-4), and apply Lemma 

3.3 to it. First, we define the Gibbs measure #~ of # defined in (25) onto the 

y-axis by 

Ezl ..... #([Yl'"YnZI"'Zm]) fl 
(34) #Z([Yl-..Y~]) = lim 

n--too EWl. . .wn,z l . . .Zm # ( [Wl ' "WnZl""Zrn] )  fl" 

The measure M z is given by 

(35) M~(~,(z)) = 

#(yl...y~pl...pk)~viAum+l ...Ay, Apl ...Apk ( i ) 
lim E k ~  ~w~...~n+k #(wl...w~wn+l...wn+k)~N(yl...Y,Pl...Pk)' Pl ...Pk 
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where the region [x l . . . xm]  x [Yl...  Ym] contains the pattern Xi, and vi is the 

row vector with i-th component 1 and the other components 0. Note that  #~ is 

the orthogonal projection of M ~ to the y-axis. 

Before calculating the Hausdorff dimension of X, we need a variation of 

Billingsley's lemma, which is proved in the same way as in Lemma 3.3. 

L E M M A  3.4: Let {Sq} be a division of a set S: S = Uq Sq and S~ N Sj = 

O. Suppose cylinder sets {ca(p)} and probability measure u satisfy regularity 

conditions (r-l) to (r-4). We assume that the n-th stage cylinders have 
the same diameter. Then we have an estimate of the dimension of S: 

log ~o~(p):pes~ U(Cn(p)) 
dimH S < sup lira inf ~{c,(p): p~S~} 

p n ~  log [c~(p)l 

The proof of Theorem 2.1 consists of three lemmas. 

LEMMA 3.5: I f  the self-a/~ne set X is irreducible, we have 

dimH X > max (5 + H(~)) .  

Before proving Lemma 3.5, we define the t-regular set, which is introduced in 

[11]. We note that there exists a product of partial transition matrices that has 

a similar property to positive matrices, if their summation is irreducible. 

PROPOSITION 3.6 ([11]): We assume that the summation of the partial transi- 

tion matrices, (Ao + " .  + Ab-1), is irreducible. There exists a family of subsets 

of {1 , . . . ,  N}, g l , . . . , g L ,  with gl U . . .  U gL = {1 , . . . ,  N}, which satisfies the 

following two conditions. 

(1) For any partial transition matrix Aa and any group gI, there exists a group 

gj  such that, for any i in gI, if (Ak)ij is positive, then j belongs to g j ,  that is, 

Ak maps the group gI into the group gz. 

(2) There exists a collection of products of partial transition matrices 

{ B 1 , . . . , B M }  such that, for each i, there is a Bs with (Bs)~ > 0 and such 

that, for a group g1 containing i, the positive entries of Bs in gt x gt forms 

a rectangular shape, i.e., (Bs)iljl > 0 and (Bs)i2j2 > 0 with i l , i 2 , j l , j 2  E gl 

implies (Bs)iid2 > 0 and (Bs)i2ji > O. 

Without loss of generality, regarding a certain length of symbol sequences as 

one symbol if necessary, we may assume that B 1 , . . . ,  BM in Proposition 3.6 are 

contained in the partial transition matrices,  A1,..  •, Ab, and we denote them a., 

A t e , . . . ,  A t e .  We define the shift ay I on the set of groups {g l , - . - ,  gz} as follows 
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ay~(gl) is the group such that i C gl and (Ay~)ij > 0 implies j E ay,(gi), i.e., 
Ay~ maps the group g~ into the group a~ (gI). Let t(gi) be the set of G's where 

At~ has a non-empty set of non-zero elements with rectangular shape in gz × gI. 
The t-regular set is the set where ts appears sufficiently often in its expansion 

and is defined as follows. 

Definition 3.7. (t-Regular Set [11]): Let Ek be the set ofy ' s  such that  the r-adic 

expansion of y, y = O.yly2..., contains at least one Yi E t(ayl...y~_ 1 (gl)) in the 

first k digits, and at least one Yi C t(ay~...v~_~ (gl)) in the following k + 1 digits, 

and so on: 

(36) Ek = 

{ y : V j > O ,  3 iE { j(2k+j-1)- + l , . . . , ( J + l ) ( 2 k + j ) } , y ~ E t ( a y l . . . y ~ _ l ( g l ) ) } . 2  

The t-regular set E is the union of Ek's: 

(37) E = [ J  Ek. 
k=l 

The t-regular set has the following properties. 

LEMMA 3.8 ([11]): The t-regular set E has full measure of #~: #~(E) = 1. 

Let S~ be the set of points where the singularity of # equals c~. Using the 

t-regular set and ergodicity of the shift, we have the following lemma. 

LEMMA 3.9 ([11]): I f  the singularity (~ is between So and O~min, there exists a 
non-negative fl such that #~(S~) = 1. 

On the set 

Sa- -  {y: l°g#([yl"''yn])l--~-gb:- d ~ (~}, 

the singularity spectrum of #Z is given by a/~ - k9 (/~). 

LEMMA 3.10: Let y beIong to the set of S~. Then the singularity of the Gibbs 
measure #fl at y for non-negative fl is given by 

lim l°g#Z([Yl"'" y~]) = aft - ~(fi). 
logl[yl...y ]l 

Proof of Lemma 3.5: Let E be the t-regular set defined in Definition 3.7. We 
define the set F by ([1, 0] × E) N X. 

Let Ta be the inverse image of Sa in X by orthogonal projection to the y-axis: 

T~ = ([1, 0] x S~) N X, where S~ is the set of points with singularity a. From 
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Lemmas 3.8 and 3.9, if we take fl satisfying #~(Sa) = 1, then Mfl(Ta n F)  = 1, 
since #Z is the projection of M z, and #~(E) = 1. 

Let (x ,y)  E T a  A F ,  r = max{k: Yk E t ( c r y l . . . y k - l ( g i ) ) , k  < m} and s = 

rain{k: Yk E t ( a y l . . . Y k - l ( g i ) ) ,  k > m}. From 

m a x / ( v o A y l . . . y ~ )  i ~ a  
min{(voAy~...y~)i : (voAy~...y~)i ¢ O} - 

and E / j  (Ay~+~...y~)ij > 1 w i t h / e  oyt...y,(gl) a n d j  E ay~...y~(gl), and (Auk)i j < 

a, we have 

1 voAy 1 . . .  Ay~ 
(38) aS_r+2 v/Ay,~+~ . . .  Ay~ < 

IvoAy~ ' ' '  Aym I' 

where i C Oyl...y m (gl) and vi is the row vector with i-th component 1 and the 

other components 0. Since y is in E,  r is smaller than 

n < - -  
m--~  1 - l °ga (m  + 1) 

q log b 

for sufficiently large n. Therefore (38) implies 

1 
(39) aS_r+~N(Yl . . .  Ym) <_ 

N ( y l . . . y n P l . . . p k )  

viAym+l . . .  Ay,~Apl . . .  Apk 

and hence, from (35), 

(40) Mfl(cn(z))  < aS-r+2 #~ ([Yl.. * Y n ] )  

- N ( y l . . . y m )  " 

Using (40), the singularity of M z is evaluated as 

(41) lim l°gMfl(c'~(z)) > lira l°g#fl'LYl""YnJ'+([ ]~ lira log N ( y l  . . . ym) 
~-*~ logIc~(z)l - ~ - * ~  logb-~ ~ loga m 

Letting 5 = los~ _ qa, from Lemma 3.10, the first term of (41) tends to log a 

(42) 

lim log~tfl([yl.. .yn]) 
~-~o~ log b -'~ 

=fl,~ - ~(/~) 

=f(~) 
=H((~), 
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while the second term of (41) tends to 

(43) lim l o g N ( y l . . . y m )  = £ 
m-+~ log a m 

Since M # (T~ N F)  = 1, using Billingsley's lemma (Lemma 3.3), the Hausdorff 

dimension of the self-affine set X is evaluated from below by 

(44) 

or  

(45) 

d i m H X > d i m H ( T , ~ N F ) > 6 + H ( 6 )  (6 - l ° g A  ) 
- - l o g  a ~ a  , 

LEMMA 3.11 : 

dimH X > max (6 + H ( 6 ) ) .  | 
6o<6<6ma× 

maxa (6 + H(6)) = ~a(7/). 

max(6 + H(6)) = ~d(B). | 
6 

LEMMA 3.12: dimH X ___ ~d(r / ) .  

P r o o f L e m m a  3.12: We consider the singularity of Mn.  Let Ly be the subset of 
X where the y-coordinate is Ly = {(x', y') E X :  y' = y}. Since the projection of 
M n is #n, we have 

l°g~]c.(z): =ELy Mn(c"(z)) 
(48) log~{c.(z): ~6L~,} = log# ~7 ([Yl.. • Y,~]) + log U(yl  . . .y,~) 

log b -n  log b -n  log a m 

Noting that the ratio of # ([Yl-.. Yn]) to N ( y l . . .  yn ) /a  n, as well as ## ([Yl... Yn]) 

to )-']~w,...wk # ([Yl... y ,~wl . . ,  wk]) # / Y~,...wk #([Wl. . .  wk]) ~ is bounded, the in- 
ferior limit of the first term of (48) tends to 

(46)  

Setting/3 = ~/, we obtain 

(47) 

Proo f  Lemma 3.11: Since (log E y  N ( y l . . .  y,~)#)/log b '~ in the right hand side 
of (6) is a convex function of/3, so is q2d(/3). As the inverse transformation of the 
modified Legendre transformation in Lemma 3.1, we have 
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(49) lira inf log #n([yl . . .  yn]) 
n-~oo log b -n 

= lira inf [ [log#([yl...~ogb :n  Yn])n - l°g ~-~z~'"~ log b-" #([zl . . .  zn]) n ] 

= l i m i n f [  - l ° g g ( y l ' ' ' y ' ~ ) n ~ o o  ~ogb ~ + l°g a'~------~nlog b n + l°g~~zl""z"g(zl""zn)nlog b ~ l°g a~n ] l o g  b '~ J 

( 1 logN(yz . . .  Yn) 
= lirn inf k n log a ) + @d (7}). 

From McMullen's lemma in [8], the inferior limit of the second term of (48) and 

the first term in (49) together are evaluated as 

(50) 
N 1In 

log (Y~'"Y~) 1 logN(yl  .. ~ Y n  ~ N(Y~"'u'01/'~ < O. l iminf l o g N ( y \ : - . y m ) .  = liminf 1 
n--too - n log a q log a m J n---too log a - 

Therefore, the inferior limit of (48) is evaluated as 

log Y~Cn(Z): zeLy Mn(c"(z)) 

(51) l iminf log~{~(~): ~eL~) _< ~d(r/). 
n~oo log b -n 

By applying a variation of Billingsley's lemma (Lemma 3.4), we have 

(52) dimH X < t~d(r/). | 

Theorem 2.1 immediately follows from Lemmas 3.5-3.12. 
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